Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Journal of Hazardous Materials Advances ; : 100326, 2023.
Article in English | ScienceDirect | ID: covidwho-2327775

ABSTRACT

The COVID-19 pandemic signified an unprecedented driver of plastic pollution, mainly composed of single-use face masks (FMs). Aiming to understand their negative impact (whether aged or not)on the trophic chain, biotic (e.g., bio-incrustation) and abiotic factors (e.g., UV-light, mechanical abrasion) which affect the toxicological profile of FMs or their sub-products (mainly microplastics, MPs, and nanoplastics, PNPs) were studied. In addition to the capacity of FMs to be an immediate source of MPs/PNPs, according to reports in the scientific literature, they are also good substrates since they tend to facilitate the proliferation and transport of eukaryotic and prokaryotic organisms, pathogens such as the SARS-CoV-2 virus, contaminating water sources and facilitating the enrichment and spread of antibiotic resistance genes (ARG) in the environment. However, there is limited research on macrofouling and species dispersal. Therefore, the present review aimed to provide an updated and summarized analysis of the environmental and ecotoxicological contribution of this type of waste as well as literature regarding face mask degradation and MPs and/or PNPs release, interaction with biota, colonization in addition to recommendations for future studies.

2.
Sci Total Environ ; 854: 158678, 2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2243397

ABSTRACT

Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.

3.
Sci Total Environ ; 820: 153261, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1799732

ABSTRACT

Personal protective equipment (PPE) pollution has become one of the most pending environmental challenges resulting from the pandemic. While various studies investigated PPE pollution in the marine environment, freshwater bodies have been largely overlooked. In the present study, PPE monitoring was carried out in the vicinity of Lake Tana, the largest lake in Ethiopia. PPE density, types, and chemical composition (FTIR spectroscopy) were reported. A total of 221 PPEs were identified with a density ranging from 1.22 × 10-5 PPE m-2 (control site S1) to 2.88× 10-4 PPE m-2 with a mean density of 1.54 × 10-4 ± 2.58 × 10-5 PPE m-2. Mismanaged PPE waste was found in all the sampling sites, mostly consisting of surgical face masks (93.7%). Statistical analyzes revealed significantly higher PPE densities in sites where several recreational, touristic, and commercial activities take place, thus, revealing the main sources of PPE pollution. Furthermore, polypropylene and polyester fabrics were identified as the main components of surgical and reusable cloth masks, respectively. Given the hazard that PPEs represent to aquatic biota (e.g., entanglement, ingestion) and their ability to release microplastics (MPs), it is necessary to implement sufficient solid waste management plans and infrastructure where lake activities take place. Additionally, local authorities must promote and ensure sustainable tourism in order to maintain the ecosystems in Lake Tana. Prospective research priorities regarding the colonization and degradation of PPE, as well as the release of toxic chemicals, were identified and discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Refuse Disposal , Water Pollution , Ecosystem , Environmental Pollution , Ethiopia , Humans , Lakes , Pandemics , Plastics , Prospective Studies , SARS-CoV-2
4.
Mar Pollut Bull ; 177: 113522, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1788166

ABSTRACT

This study aimed to report personal protective equipment (PPE) contamination in Santos beaches (Brazil) using standardized procedures for the first time while comparing two periods to understand the progression of PPE contamination. The occurrence of PPE items was ubiquitous in all sampled sites, although the densities were relatively low compared to those in other parts of the world. Unlike previous studies, reusable face masks were the most common type of PPE. PPE density in the studied areas was similar in both sampling seasons, probably because of the influence of tourism, urbanization, and local hydrodynamic aspects. PPE items can release microfibers into the aquatic environment and pose entanglement hazards to marine biota. A wider monitoring of PPE pollution, accompanied by surveys on PPE usage and behavior, as well as chemical characterization of the discarded PPE items, is needed to fully understand this unprecedented form of plastic pollution.


Subject(s)
COVID-19 , Personal Protective Equipment , Brazil , Humans
5.
Sci Total Environ ; 824: 153771, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1692896

ABSTRACT

The COVID-19 pandemic led to a still ongoing international health and sanity crisis. In the current scenario, the actions taken by the national authorities and the public prioritized measures to control the transmission of the virus, such as social distancing, and face mask-wearing. Unfortunately, due to the debilitated waste management systems and incorrect disposal of single-use face masks and other types of personal protective equipment (PPE), the occurrence of these types of items has led to the exacerbation of marine plastic pollution. Although various studies have focused on surveying marine coasts for PPE pollution, studies on inland water are largely lacking. In order to fill this knowledge gap, the present study assessed PPE pollution in the Iranian coast of the Caspian Sea, the largest enclosed inland water body in the world by following standard monitoring procedures. The results concerning the density (1.02 × 10-4 PPE/m2) composition (face masks represented 95.3% of all PPE) of PPE are comparable to previous studies in marine waters. However, a notable decrease in the occurrence of PPE was observed, probably to behavioral and seasonality reasons. The possible consequences of PPE pollution were discussed, although much more research is needed regarding the ecotoxicological aspects of secondary PPE contaminants, such as microplastics and chemical additives. It is expected that face mask mandates will be eventually halted, and PPE will stop being emitted to the environment. However, based on the lessons learned from the COVID-19 scenario, several recommendations for coastal solid waste management are provided. These are proposed to serve during and after the pandemic.


Subject(s)
COVID-19 , Personal Protective Equipment , COVID-19/epidemiology , Caspian Sea , Humans , Iran , Pandemics , Plastics , SARS-CoV-2 , Water
6.
Sci Total Environ ; 798: 149282, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1331225

ABSTRACT

The increasing use of personal protective equipment (PPE) as a sanitary measure against the new coronavirus (SARS-CoV-2) has become a significant source of many environmental risks. The majority of the governments enforce the use of PPE in public areas, such as beaches. Thus, the use and disposal of PPE have compromised most solid waste management strategies, ultimately leading to the occurrence of PPE polluting the marine environment. The present study aimed to monitor the PPE pollution associated with COVID-19 along the coastline of Agadir, Morocco. In parallel, the influence of the activities carried out in each sampled beach before and after the lockdown break was reported. Overall, a total number of 689 PPE items were identified, with a mean density of 1.13 × 10-5 PPE m-2 (0-1.21 × 10-4 PPE m-2). The majority of the PPE items found were face masks (96.81%), out of which 98.4% were surgical masks and 1.6% were reusable cloth masks. The most polluted sites were the beaches with recreational activities, followed by surfing, and fishing as the main activity. Importantly, PPE density increased significantly after lockdown measures. Additionally, the discarded PPE sampled in the supralittoral zone was higher than PPE recorded in the intertidal zone. This confirms that PPE items are driven by the beachgoers during their visit. PPE items are a source of microplastic and chemical pollutants, a substrate to invasive species colonization, and a potential threat of entanglement, ingestion, and/or infection among apex predators. In the specific case of Agadir beaches, significant efforts are required to work on the lack of environmental awareness and education. It is recommended to improve beach cleaning strategies and to penalize incorrect PPE disposal. Additional alternatives may be adopted, as the involvement of biodegradable materials in PPE manufacturing, recycling through pyrolysis, and encouraging reusable and washable masks.


Subject(s)
COVID-19 , Personal Protective Equipment , Communicable Disease Control , Humans , Morocco , Pandemics , Plastics , SARS-CoV-2
7.
Mar Pollut Bull ; 169: 112497, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1230652

ABSTRACT

The extensive use of personal protective equipment (PPE) driven by the COVID-19 pandemic has become an important contributor to marine plastic pollution. However, there are very few studies quantifying and characterizing this type of pollution in coastal areas. In the present study, we monitored the occurrence of PPE (face masks, bouffant caps, and gloves) discarded in 13 sites along Cox's Bazar beach, the longest naturally occurring beach in the world. The vast majority of the items were face masks (97.9%), and the mean PPE density across sites was 6.29 × 10-3 PPE m-2. The presence of illegal dumping sites was the main source of PPE, which was mainly located on touristic/recreational beaches. Fishing activity contributed to PPE pollution at a lower level. Poor solid waste management practices in Cox's Bazar demonstrated to be a major driver of PPE pollution. The potential solutions and sustainable alternatives were discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Humans , Pandemics , Plastics , SARS-CoV-2
8.
Sci Total Environ ; 774: 145774, 2021 Jun 20.
Article in English | MEDLINE | ID: covidwho-1078187

ABSTRACT

The use and disposal of face masks, gloves, face shields, and other types of personal protective equipment (PPE) have increased dramatically due to the ongoing COVID-19 pandemic. Many governments enforce the use of PPE as an efficient and inexpensive way to reduce the transmission of the virus. However, this may pose a new challenge to solid waste management and exacerbate plastic pollution. The aim of the present study was to report the occurrence and distribution of COVID-19-associated PPE along the coast of the overpopulated city of Lima, Peru, and determine the influence of the activities carried out in each study site. In general terms, 138 PPE items were found in 11 beaches during 12 sampling weeks. The density was in the range of 0 to 7.44 × 10-4 PPE m-2. Microplastic release, colonization of invasive species, and entanglement or ingestion by apex predators are some of the potential threats identified. Recreational beaches were the most polluted sites, followed by surfing, and fishing sites. This may be because recreational beaches are many times overcrowded by beachgoers. Additionally, most of the PPE was found to be discarded by beachgoers rather than washed ashore. The lack of environmental awareness, education, and coastal mismanagement may pose a threat to the marine environment through marine litter and plastic pollution. Significant efforts are required to shift towards a sustainable solid waste management. Novel alternatives involve redesigning masks based on degradable plastics and recycling PPE by obtaining liquid fuels through pyrolysis.


Subject(s)
COVID-19 , Personal Protective Equipment , Animals , Cities , Humans , Pandemics , Peru , Plastics , SARS-CoV-2
9.
Mar Pollut Bull ; 163: 111879, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-947308

ABSTRACT

Since the COVID-19 outbreak was declared as a global health emergency, the use of multiple types of plastic-based PPEs as a measure to reduce the infection increased tremendously. Recent evidence suggests that the overuse of PPEs during the COVID-19 pandemic is worsening plastic pollution in the marine environment. In this short focus, we discussed the potential sources, fate, and effects of PPE plastic to the marine environment and proposed five key research needs, involving (1) the occurrence and abundance of PPEs, (2) the sources, fate, and drivers of PPEs, (3) PPEs as a source of microplastics, (4) PPEs as a vector of invasive species and pathogens, and (5) PPEs as a source and vector of chemical pollutants in the marine environment. We suggest that addressing these knowledge gaps will lay the groundwork for improved COVID-19-associated waste management and legislation to prevent marine plastic pollution to continue exacerbating.


Subject(s)
COVID-19 , Plastics , Humans , Microplastics , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL